

Groundwater and Soil Protection Educational subject description sheet

Basic information

Field of study

Course Offer for exchange students - second cycle studies, including uniform master studies (MA programmes)

Speciality

_

Organizational unit

Course Offer for exchange students

Study level

second cycle studies, including uniform master studies (MA programmes)

Study form

full-time studies

Education profile

General academic

Didactic cycle

2024/25

Subject code

PWMPWM2S D.B100000K.03757.24

Lecture languages

english

Mandatory

Elective subjects

Block

Major subjects

Disciplines

Environmental engineering, mining and energy

Coordinator	Mateusz Grygoruk
Teacher	Mateusz Grygoruk

Period Winter semester	Examination Pass with grade	Number of ECTS points
	Activities and hours Lecture: 10 Project exercises: 20	

Wygenerowano: 2024-09-19 04:01

Goals

Code	Goal	
C1	The aim of the course is to acquaint students with the principles of groundwater flow and the role of infiltration through different soil types in shaping groundwater resources as well as to familiarize students with theoretical and practical aspects of the groundwater flow modelling. The course consists of mathematical basis of the modelling theory and the model setup, execution, calibration and the result analysis. In the practical part of the course, the MODFLOW 2005 algorithm. The model will be used to test possibilities of land management as a source of problems in groundwater and soil protection.	

Entry requirements

Advanced knowledge on GIS (preferably ESRI ArcGIS 10 or QGIS), Hydrogeology and Hydrological processes, knowledge on groundwater recharge, base flow and evapotranspiration as well as soil types and their role in shaping infiltration processes.

Subject's learning outcomes

Code	Outcomes in terms of	Effects	Examination methods
Knowledge - Student knows and understands:			
W1	construction, principle of operation and design of selected types of surface and groundwater intakes.		Project, Report
W2	principles of groundwater flow.		Project, Report
W3	role of soils in groundwater recharge and infiltration processes		Project
Skills - Student can:			
U1	groundwater model development, execution, calibration and application in solving real-life problems.		Report
U2	develop a simple groundwater flow model.		Project
Social competences - Student is ready to:			
K1	work independently as well as in the team.		Presentation

Study content

No.	Course content	Subject's learning outcomes	Activities
1.	The course consists of mathematical basis of the modelling theory and the model setup, execution, calibration and the result analysis. In the practical part of the course, the MODFLOW 2005 algorithm. The model will be used to test possibilities of land management as a source of problems in groundwater and soil protection.	W1, W2, W3, U1, U2, K1	Lecture, Project exercises

Course advanced

Activities	Methods of conducting classes	
Lecture	Lecture, Presentation, Problem solving	
Project exercises	Case study	

Activities	Examination method	Percentage
Lecture	Presentation	40%
Lecture	Project	30%
Project exercises	Report	30%

Activities	Credit conditions	
Lecture	1. A complete groundwater flow model project along with preliminary calibration and sensitivity analysis results and scenario analyses, documented by a final report (60%); 2. Presentation of the research outcome (40%)	
Project exercises	A complete groundwater flow model project along with preliminary calibration and sensitivity analysis results and scenario analyses, documented by a final report.	

Literature

Obligatory

- 1. Anderson M., Woessner M., Hunt, R.J., 2016. Applied Groundwater Modeling, Second Edition, Blackwell, New York.
- 2. Pinder, G. 2010. Groundwater modelling. Wiley India Ltd.
- 3. Hill, M.C., Tiedemann, C., 2007. Effective groundwater flow model calibration. With analysis of data, sensitivities, predictions, and uncertainty. USGS publications DOI: 10.1002/9780470041086.index

Optional

- $1. \ https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/692989/Envirnment-A gency-approach-to-groundwater-protection.pdf$
- 2. European Commission, Directorate-General for Environment, Groundwater protection in Europe : the new Groundwater Directive : consolidating the EU regulatory framework, Publications Office, 2009, https://data.europa.eu/doi/10.2779/84304
- 3. https://www.bgs.ac.uk/geology-projects/groundwater-research/groundwater-protection/
- 4. https://www.epa.gov/sites/default/files/2017-02/documents/gwhb041404.pdf
- 5. https://joint-research-centre.ec.europa.eu/scientific-activities-z/soil-protection en

Calculation of ECTS points

Activity form	Activity hours*
Lecture	10
Project exercises	20
Preparation of the report	5
Preparing the project	15
Student workload	Hours 50

^{*} hour means 45 minutes