

Biomaterials Educational subject description sheet

Basic information

Field of study Course Offer for exchange s studies, including uniform r programmes) Speciality - Organizational unit Course Offer for exchange s Study level second cycle studies, includ (MA programmes) Study form full-time studies Education profile General academic	naster studies (MA	Didactic cycle 2024/25 Subject code PWMPWM2S_D.B100000P.06421.24 Lecture languages english Mandatory Elective subjects Block Basic subjects Disciplines	
Coordinator	Marta Kutwin		
Teacher	Marta Kutwin		
Period Winter semester	Examination Pass with grade Activities and hours Lecture: 15 Laboratory exercises: 24 Ćwiczenia seminaryjne: 6		Number of ECTS points 4

Goals

Code	Goal
C1	The course will focus on the biomaterials, biocompatibility of biomaterials, and biomaterials technology applied in clinical practice. Biomaterials course will also provide a solid basis in the principles in field of materials science, cell biology, cellular interactions with biomaterials, methods for biomaterials surface characterization, analysis of corrosion, biodegradation of implants by reference to case studies. Introduction to basic concepts of Biomaterials Science. Lecture: Manufacturing and properties of metals, ceramics, polymers, composites and nanocomposites. Lecture and laboratory practice Assessment of biocompatibility of biomaterials . Lecture and laboratory practice. Host Responses to Biomaterials. Lecture and laboratory practice.

Entry requirements

Cell biology, chemistry and physic.

Code	Outcomes in terms of	Effects	Examination methods	
Knowledge - Student knows and understands:				
W1	Students know basic biomaterials definitions		Report, Test (written or computer based)	
W2	Students know and understand the principles of requirements of a biomaterial used for medical applications		Report, Test (written or computer based)	
W3	Students understand the advance therapeutics and the concept of tissue engineering		Report, Test (written or computer based)	
Skills - S	Student can:			
U1	Students perform experiments on the biocompatibility of selected biomaterials using in vitro and in ovo model		Report, Test (written or computer based)	
U2	Students perform and plan experiments on the material characterization		Report, Test (written or computer based)	
U3	Students design experiments with new biomaterials		Report, Test (written or computer based)	
Social co	ompetences - Student is ready to:			
К1	Students can combine theoretical and practical knowledge		Assessment of activity during classes	
K2	Students are ready to use his/her knowledge and skills in further stages of education		Assessment of activity during classes	

Subject's learning outcomes

Study content

No.	Course content	Subject's learning outcomes	Activities	
-----	----------------	--------------------------------	------------	--

1.	The principles in field of materials science, cell biology, cellular interactions with biomaterials, methods for biomaterials surface characterization, analysis of corrosion, biodegradation of implants by reference to case studies. Introduction to basic concepts of Biomaterials Science. Lecture: Manufacturing and properties of metals, ceramics, polymers, composites and nanocomposites. Lecture and laboratory practice Assessment of biocompatibility of biomaterials . Lecture and laboratory practice. Host Responses to Biomaterials. Lecture and laboratory practice.	W1, W2, W3, U1, U2, U3, K1, K2	Lecture, Laboratory exercises, Ćwiczenia seminaryjne
----	---	-----------------------------------	--

Course advanced

Activities	Methods of conducting classes	
Lecture	Conversation lecture	
Laboratory exercises	Laboratory (experiment), learning by experiment	
Ćwiczenia seminaryjne	Discussion	

Activities	Examination method	Percentage
Lecture	Test (written or computer based)	50%
Laboratory exercises	Report	45%
Ćwiczenia seminaryjne	Assessment of activity during classes	5%

Activities	Credit conditions	
Lecture	>51% max points	
Laboratory exercises	>51% max points	
Ćwiczenia seminaryjne	attendance to lab classes	

Literature

Obligatory

- 1. Introduction to Biomaterials. Basic Theory with Engineering Applications. C. Mauli Agrawal, Joo L. Ong, Mark R. Cambridge University Press 978-0-521-11690-9
- 2. Biomaterials in Tissue Engineering and Regenerative Medicine: From Basic Concepts to State of the Art Approaches 9811600015, 9789811600012
- 3. Heng, Paul WS. "Controlled release drug delivery systems." Pharmaceutical Development and Technology 23.9 (2018): 833-833.

Optional

- 1. Siepmann, J., Siegel, R. A., & Rathbone, M. J. (2012). Fundamentals and applications of controlled release drug delivery (Vol. 3, pp. 33-34). New York: Springer.
- 2. Ratner, B. D., & Bryant, S. J. (2004). Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng., 6, 41-75.
- 3. Peppas, N. A., & Langer, R. (1994). New challenges in biomaterials. Science, 263(5154), 1715-1720.
- 4. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: an introduction to materials in medicine. Elsevier.
- 5. Omidi, M., Fatehinya, A., Farahani, M., Akbari, Z., Shahmoradi, S., Yazdian, F., ... & Vashaee, D. (2017). Characterization of biomaterials. In Biomaterials for oral and dental tissue engineering (pp. 97-115). Woodhead Publishing.

Activity form	Activity hours*
Lecture	15
Laboratory exercises	24
Ćwiczenia seminaryjne	6
Preparing the project	30
Preparation for the exam	45
Student workload	Hours 120
Number of ECTS points	ECTS 4

Calculation of ECTS points

* hour means 45 minutes